Single Pure - Trigonometry

Patrons are kindly reminded that

$$\sin^2 \theta + \cos^2 \theta \equiv 1$$
 and $\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$.

They are also kindly reminded that they should know the following:

θ	$\sin\theta$	$\cos \theta$	$\tan \theta$
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
45°	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$

They are also reminded to give answers to three significant figures if answers are not exact. Also $\sin^2 x$ means $(\sin x)^2$.

1. What is the exact value of the following (without a calculator)

- (b) $\cos(-420)$.
- (c) tan 300.
- 2. Sketch
 - (a) $y = 2\sin(3x)$ for $0^{\circ} < x < 180^{\circ}$.
 - (b) $2y = \cos(\frac{x}{2})$ for $-360^{\circ} < x < 360^{\circ}$.
- 3. Convert:

(a) $\frac{\pi}{10}$ radians to degrees.	18
(b) 20° to radians.	$\frac{\pi}{9}$
(c) 1.2 radians to degrees.	68.8
(d) 540° to radians.	3π

4. Solve the following:

- (a) $2\cos x + 1 = 0$ in range $0^{\circ} < x < 360^{\circ}$.
- (b) $\tan \theta = \frac{1}{\sqrt{3}}$ in range $0^{\circ} < x < 360^{\circ}$.
- (c) $7 \sin x = 2 \cos x$ in range $0^{\circ} < x < 360^{\circ}$.
- (d) $2 \sin x = 1$ in range $0^{\circ} < x < 360^{\circ}$.
- (e) $-\sin\theta = 0.6$ in range $-360^{\circ} < x < 360^{\circ}$.
- (f) $\tan^2 \theta = 2$ in range $-180^\circ < x < 180^\circ$.

5. Solve the following equations in the required range.

(a) $4\sin^2\theta = 3$ in range $-360^\circ < \theta < 360^\circ$.	$\theta = \pm 60, \pm 120, \pm 240, \pm 300$
(b) $1 + \sin x = 2\cos^2 x$ in range $0^\circ < x < 360^\circ$.	<i>x</i> = 30, 150, 270
(c) $5 + 7 \sin x = 2 \cos^2 x$ in range $-180^\circ < x < 360^\circ$.	x = -150, -30, 210, 330
(d) $\cos^2 x + 1 = \sin^2 x + \cos x + 3$ in range $0^\circ < x < 720^\circ$.	x = 180, 540

16.0, 195.9

x = 120, 240

30, 150

 $-\frac{\sqrt{3}}{2}$

 $-\sqrt{3}$

1	(م)	$2 \tan^2 \theta \perp t$	an A -	12 +	tan2 A it	rance	_360°	/	Δ	/	0°	,
	(5)	$2 \tan \theta \pm 1$	an 0 –	$12 \pm$	tan on	rrange	-300	<	σ	\leq	υ	٠

(f) $2\cos^2\theta + 14 = 8\cos\theta - \sin^2\theta$ in range $-2\pi < \theta < 2\pi$.

(g) $2 \sin x \cos x = \cos x$. (Do *not* divide through by $\cos x$!!!)

- (a) If $\sin \theta = \frac{3}{4}$, find $\cos \theta$.
- (b) If $\cos \theta = \frac{5}{6}$, find $\sin \theta$.
- (c) If $\cos \theta = -\frac{1}{3}$, find $\tan \theta$.
- (d) If $\sin \theta = -\frac{\sqrt{3}}{2}$, find $\cos \theta$.
- (e) If $\cos \theta = 1$, find $\tan \theta$.
- (f) If $\tan \theta = \frac{6}{5}$, find $\sin \theta$.
- (g) If $\sin \theta = 0.25$, find $\cos \theta$ given that θ is acute.
- (h) If $\sin \theta = 0.25$, find $\cos \theta$ given that θ is obtuse.
- (i) If $\sin \theta = \frac{1}{2}$, find $\tan \theta$ given that θ is obtuse.

7. Solve the following equations.

(a) $\sin 2x = \frac{1}{2}$ for $0^{\circ} < x < 360^{\circ}$.	<i>x</i> = 15, 75, 195, 255
(b) $2\sin\left(\frac{x}{2}\right) = \sqrt{3}$ in range $0 < x < 1440$.	<i>x</i> = 120, 240, 840, 960
(c) $\sin(2x - 30) = \frac{1}{\sqrt{2}}$ for $-180^{\circ} < x < 180^{\circ}$.	x = -142.5, -97, 5, 37.5, 82.5
(d) $\tan(3x - 10) = 0$ for $0^{\circ} < x < 180^{\circ}$.	$x = \frac{10}{3}, \frac{190}{3}, \frac{370}{3}$
(e) $2\cos(2x - 70) = 1.2$ for $0^{\circ} < x < 360^{\circ}$.	<i>x</i> = 8.44, 61.6, 188, 242
(f) $\cos(2x + 40) = \frac{1}{2}$ in range $0 < x < 360$.	<i>x</i> = 10, 130, 190, 310
(g) $\sin(4x - 40) = 0.6$ for $0^{\circ} < x < 180^{\circ}$.	<i>x</i> = 19.2, 45.8, 109, 136
(h) $\sin^2(2x - 30) - 1 = 0$ for $-180^\circ < x < 180^\circ$.	x = -120, -30, 60, 150
8. In triangle ABC, $AB = 7$, $AC = 11$ and $B\hat{A}C = 100^{\circ}$.	
(a) Find length <i>BC</i> .	14.0
(b) Find angle $A\hat{B}C$.	50.6
9. In triangle XYZ, XY = 11, YZ = 6 and $Y\hat{X}Z = 20^{\circ}$.	
(a) Find angle $X\hat{Y}Z$.	18.8 or 121
(b) Find the area of the triangle.	10.7 or 28.2
10. Prove the following results	
(a) $\frac{1-2\sin^2\theta}{\cos\theta+\sin\theta} \equiv \cos\theta - \sin\theta.$	
11. (a) Find the maximum value of $2 + \sin x$.	
(b) Find the smallest positive value of <i>x</i> for which this occurs.	
12. (a) Find the minimum value of $5 + 2\cos(x - 40)$.	П

 $\theta = -288, -256, -108, -76.0$

No solutions

	(b) Find the smallest positive value of <i>x</i> for which this occurs.	
13.	(a) Find the maximum value of $2 - 7\sin(2x - 10)$.	
	(b) Find the smallest positive value of x for which this occurs.	
14.	(a) Find the minimum value of $\frac{5}{7 + 3\sin(x - 30)}$.	
	(b) Find the smallest positive value of <i>x</i> for which this occurs.	